• Calender

    August 2015
    M T W T F S S
    « Jul   Sep »
     12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31  
  • Contact

    Send us press releases, events and new product information for publication..

    Email: nchuppala@ outlook.com

What it means to “go pro” in data science

 

A look at what it takes to be a professional data science programmer.

Noahs_Ark_Paul_K_FlickrMy experience of being a data scientist is not at all like what I’ve read in books and blogs. I’ve read about data scientists working for digital superstar companies. They sound like heroes writing automated (near sentient) algorithms constantly churning out insights. I’ve read about MacGyver-like data scientist hackers who save the day by cobbling together data products from whatever raw material they have around.

The data products my team creates are not important enough to justify huge enterprise-wide infrastructures. It’s just not worth it to invest in hyper-efficient automation and production control. On the other hand, our data products influence important decisions in the enterprise, and it’s important that our efforts scale. We can’t afford to do things manually all the time, and we need efficient ways of sharing results with tens of thousands of people.

There are a lot of us out there — the “regular” data scientists; we’re more organized than hackers but with no need for a superhero-style data science lair. A group of us met and held a speed ideation event, where we brainstormed on the best practices we need to write solid code. This article is a summary of the conversation and an attempt to collect our knowledge, distill it, and present it in one place. Read more…

Advertisements